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1. INTRODUCTION:

The determination of complex systems reliability has become a

subject of great concern to reliability engineers. As systems become

increasingly comp lex , determination of system reliability becomes

increasingly difficult.

The purpose of this report is to survey some of the most recent

developments in this area with a view to expose reliability engineers

to these techniques. An algorithm that seems to be the most efficient

to date is delineated. The concepts surveyed are then extended to

calculation of time dependant complex systems reliability and the

availability of repairable systems

.1



1. Assumptions and Notation

1.1. Assumptions

1) A complex system can be expressed as a network composed of

many nodes and components.

2) A set of nodes which are all reliable includes two distinct

nodes, i.e. the input node s and the output node t

3) Each component may be represented as a two—terminal device and

has its own reliability .

4) The state of each component or of the network is either good

(operating) or bad (failed).

5) The states of all components are statistically independent.

L2. Notation

X~ random variable which denotes the state of i—th component

O — bad state

1 — good state

P
1 

— P(X
1
—0) , p — p~ if all components are the same

• 1 — p
~ 

— P(X
1
1), q = q

1 
if all components are the same

R — system reliability

R
1 

— system unreliability

- 1 -  R
B

2
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2. Classificati of Complex Systems

2.1. Series — parallel system

For m components in series

in
R
5 

fl q1
i—i

For n componen ts in parallel

n
Rf 

TI p
i—l i

For in components in series and n components in parallel

n in
R
f~~ 

1 1( 1 —
j—i i=l

2.2. k - o ut o f— n sy s t em

n
n n—r r

R E()p q
~ r k r

where the components are identical.
2.3. Non series—parallel systems

A complex system may be composed of non series-parallel

sub - syStemS e.g. a bridge circuit. However , it is not easy

to obtain the reliability of such systems. We next introducs

the concept of a tie set and a cut set.

Definition: A tie set l~ a set of components which forms a

path connected from s to t

Definition: A cut set is a set of components which separates all

connections from s to t if it is deleted from

the system.

3
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If b represents the total number of components , we have

b 
b—uR — )- B(i) p q

1—0
b 

i b—i
R
f 

• 1 C(i) p q
• 1—0

Where

B(i) • total number of tie sets of size i.

C(i) — total number of cut sets of size i.

If we have the information about the smallest number of cut gets

say c , then the following upper and lower bounds on system

unreliability can be obtained

b b
Rf 

— ~ C( i)p~q
b
~~ < ~ (~ )p iqb~i _ (l)

i—O i—c

b b—i i 
b— (n—l) b i b—iR — E B(i)p q < ~ (~ )p q _________ 

(2)
~ i—o i—u

The second inequality comes from the fact that it takes at

least (n—i) components to connect a network with n nodes.

From (2) we have

b— (n—l) b I b—i
R
f~~~

l — R  > 1 —  ~ (1)pqB j_
~

b ib-i
— (4)pq

1”b— (n—2)

Combining this with (1) we get

Z (~)p
i
q
b_i 

< R
f 

< ~ (~)piq
b_i 

(3)
i—b— (n—2) i—c

which implies the upper and lower bounds on system unreliability~ [1OJ .

4
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Alternatively , Esary and Proshan , [1], have obtained the following

tie and cut bounds on system reliability

k r
ri (1 — 11 . 

~~~ 
< R < 1. — (1 — H q .)

j=l IcC . j=l icB .
3 3

where C~ = jth minimal cut set.

B. = jth minimal tie set.
-3

— I 
In the calculation of system reliability it has been pointed out that

computation time would be reduced by calculating network reliability

• using cut sets instead of tie sets.

Now

= event that all components fail in C~ .

Since C~ might not be mutually exclusive , 
we hav~ , [9],

k
R
f
= P (U C )

j—l

k
= ~~ P(C .) — ~ P(C~ C . )
j=l l~ j1

<j
2
<k 1 Jz

+ E P(C~ flC ~~Cj
l5,j1<j2<j3

<n 1 ~2 3

- + (~l)~~~p( fl ~~~ ) 
___  

(4)
j—l

which is the exact expression for system unreliability. However, it

is not good for a large network to calculate exact unreliability according

to the above formula.

5 
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Although minimal cut sets C~ are not 
mutually exclusive events, it

has been suggested, [3 1, that equation (4) be approximated by

k k 
—

R
f

P(UC)~~~ Z P(C.)
j=l~~ j=l

which would be a good approximation when p~ 
is small.

6
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.i. Severa l  Approaches to Calculate System Reliability

3.1. Inspection methods [8]

In this method reliability is obtained in a series or parallel

manner by inspection .

If the system is composed of a small number of units , it is

easy to write down the probabi l i ty  of success of the comb ination .

3.2. Event—space methods [8]

A list of all possible logical cccurrences ,i.e. success or failure ,

in the system is made. Since all these events are mutually

exclusive, the sum of the probability of each event yields the

reliability.

3.3. Path—tracing methods [8]

In this method , only successful paths (which are generally not

mutually exclusively) form favorable events. Since they are not

mutually exclusive , the reliability is given by expansion and

• cancellation of terms.

Misra and Rao , [7 ] ,  gave the path t rac ing a lgor i thm taking account

of the loop in the network. This is summarized as follows:

Let n = number of nodes, b = number of components.

Step 1: Find out all possible paths from s to t and sum them up.

Step 2: Find all paths with only one loop and assign a negative

sign to their sum.

Step 3: Find all paths with two loops and assign a positive sign

to their sum.

7 
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Step 4: Repeat step 2 and step 3 for all loops until the maximun

number of loops is b — (n—I).

Assign a negative sign to that sum whose number of loops

is odd .

Assign a positive sign to that sum whose number of 1oop~

is even.

Summing up the probability for all loops yields the reliability.

Another approach to find a path from s to t was derived by Kim,

Case and Ghare, [5]. They used the n—step path matrix P~ . to

enumerate all possible paths from s to t.

The n—step path matrix P~ can be written as

s2 st

2s 2t
fl I I
P • I I

n• ~,n 
~ — _

- 
ts t2

where component (l ,j) of P~ is defined by

— 5 (i,j) if there exists a component from i to j

0 otherwise

Then P’~ is found by the recursive relationshi p:

= ~
n_l 

+

where the operation symbol + i defined as follows:

f ~~~~~ for ~. — s,2 i if all three conditio~s

J below are met
ijr )

( 0 otherwise

8
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n-I
3 ~

where ~~~~~ represents •e-th n—step path from i to j.

This implies that if three conditions aboe are met , then we add

node j to a sequence of nodes for the (n—i) step path ~ from

I to k to form the n—step path r from I to j. In other words,

the operation + implies Boolean OR summation. The solution of

this operation + can be o1 tained by finding for all n for

which # 0.
Introducing the following operation

ii *• [ rip . ‘ ]  lip
j

ij * i
~j *[z(fl~ )]  — z(npj I

k j  k j

i 
*[f l ( : : p i)] [lT( p i) I

k j~~ k j~~

yields the approximate reliability, where P j 
is any nonnegative

real number and 1~ Is any nonnegative integer.

3.4. Decomposition methods 181

We can decompose a complex system into suitable equivalents

whose reliabilities are readil.y calculated using successive

application of a conditional probability theorem. The technique



must begin to select a su i table  equivalent . Suppose that  one

can find a suitable equivalent , say X.

Then the system reliability is given by

1
R = T P (system goodfX—i)P(X=i).

i—0

Krishnamurthy and Komissar, [6), gave the algorithm to find

suitable equivalents by using the input matrix , the reliability

matrix, and the reachability matrix.

We shall introduce this algorithm below.

Denote the reachability matrix byU whose elementU~3 
is such

that
( 1 if node 3 can be reached from noe i

0 otherwise

Step 1: Pick (i,j) such that (i) i 
~ 
j (ii) = 1

(iii) i~~ s ,j
~~ 

t .

Step 2: Put k such that Uik - l,U~~ = 1, k ~ i ~ 3 in the

set L which is the set of nodes of the equivalent.

Step 3: Add i and j to L as end points.

Step 4: If each component with a node internal to L has its other

node in L, then label the set of components as M. Add to

M the component whose nodes are the endpoints of L.

Step 5: Treat the equivalent, i.e. M and L, as a new network

and search it for smaller equivalents.

Repeating until all equivalents are suitable equivalents yields an

easy calculation of system reliability.

10 
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• 3.5. Cut set and tie set methods [8)

As mentioned before, (sec. 2.3), this might be the most

efficient technique to calculate the reliability of a

complex system.

Jensen and Beilmore, [4], have presented an algorithm to

determine the minimal cut set which provides for the

construction of a tree.

Step 1: Create three vertices for the tree indexed 0, 1

and 2, and edges (0,1) and (1,2) labeled sT and

tF, respectively .

Step 2: Choose the unscanned vertex with the greatest

index and mark it scanned. If there are no scanned

vertices, the algorithm terminates.

Find the unique simple path £ . .

Let = (xl an edge in is labeled xT}

“21 (xl an edge in & is labeled xF}
Y . = {xJ x is in N but not in Y or Y . }3i 1. 2i
W (xl x is in Y • and it is a terminal of a
1 31

component whose other terminal is Y11
}

If W
I 

— • , then go to step 7.

Otherwise, choose y £ W
1.

Y —
~~ U Y  -

41 21 31

If the subnetwork Y41 is not connected , then go to

step 4. Otherwise go to step 3.

11
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Step 3: Create two new vertices indexed k and k+l where k

is 1 greater than the number of vertices currently

in the tree.

Create two new edges (i,k) and (I, k+l), labeled

yT and yF , respectively.

Go to step 2.

Step 4: Find the set of nodes which defines the connected

subnetwork including t

If 
~~21C Y5 , 

go to step 5.

Otherwise go to step 6.

Step 5: Create vertex k and edge (i,k) labeled yT where k

- •  

is one greater than the number of vertices currently

in the tree. Determine the sei 
~6 

= — Y
5
.

For each number z £ Y , create a vertex of the t ree
• 6

and an edge labeled zT. If is the number of

members in Y6, vertices k+l, k+2, . . ., k+~Y6~ will

be created. Edges (k,k+l), (k+1,k+2),. . ., (k +j Y 6~ —l , (
k+ 1Y6 1) will also be created.
Finally, create vertex k+1Y61 + 1 and edge

(I, k+ I’
~6I +1) labeled yF.

Co to step 2.

Step 6: Create one new vertex indexed k and an edge (i,k)

labeled yF.

Go to step 2.

12
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Step 7: A minimal cut has been generated at this step.

xi —

X
1
= N - Y

11

This heuristic algorithm cannot , however , yield system

reliability easily since the components in the minimal

• cut set are not mutually exc1us~ ’ - ’ . We shall give a

more heuristic algorithm to find the modified cut at

next section.

4. An algorithm for Network Reliability

We shall introduce the procedure by Hansler et.al., [3], which

produces modified cut sets and seems to be the best algorithm to

-‘ calculate system reliability to date. The minimal set of mutually

- 
exclusive events produced by this algorithm are called modified

cut sets. This algorithm, generally speaking, performs a depth

first search of the given network starting at node s and

-• traversing several components at the same time.

Step 1: (InitializatIon)

- • 
a) N set of all nodes except a

-• b) C = set of all components not incident to S

F
1
— set of all components incident ot s and t.

S~— set of all components incident to s and not to t.

c) Construct a binary number B
1 
consisting of l~ll 

digits bik,

bik
aull for 1 < k < IS1t

d) i — i

13
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Step 2:

a) subset of S
1 

— such that •
~ j k 

T
1 

if b
ik 

= I

S
ik 4 T~ if bik = 0

b) M~ — set of all nodes contained in N and incident to

components contained in T.

c) N = N — M
1

d) F
i+l 

= set of all components contained in C and

incident to t and adjacent to any components contained

m T .
1

e) S
1~1 

set of all components contained in C and in ident

to nodes in N other than t and adjacent to any c~mponent

contained in

f) C = C — (S
1~1U 

F
1~1
)

Step 3: If S~~1 ~

then a) Construct a binary number Bj+1 consisting of

r l~j+l l digits b
i+l,k

b j+l k 
1 for 1 ~ k ~ 1S 1÷11

b) 1 = 1 + 1

c) Go to step 2

Otherwise

d) T
i+l

e) For a modified cut set

1+1
CS= [F0 T0 (S~~— T ) ]

1-1 4-

where ¶ — all components in T - are assumed

to be operative.

14



Step 4:

a) C = C F
i+1 

S
1~1

b) N — N  M
1

c) B
1 

= B
1 1  

(module 2)

If B
1 

> 0

then d) Go to step 2

Otherwise

e) Go to step 5.

Step 5:

a) i i - l

if i > 0

then b) Go to step 4

Otherwise

c) Stop.

Theorem: The modified cut set generated above is

(1) collective exhaustive

(ii) mutually exclusive

(iii) contains minimal cuts

This theorem can be recognized from the following example.

4.2. Example

As an example of this algorithm, we consider a bridge circuit as shown

in Figure 1. 2

I

Figure 1

—~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ --• •- -~~~~ ~~~- —~~~~~~~~~- ~~--~~~~~~~~ -.- • - • ~~~~~-



Step 1: a) N — [2,3,4]

b) C [c,d,eJ

F
1 

—

S
1 

— [a,b)

c) B
1
= 2

d) I = 1

Step 2: a) T
1 

= [a,b]

b) — [2,3]

c) N — (4]

d) F
2 

= [d,e]

e) S
2 [cJ

f) C — [~~]

Step 3: a) B
2
= l

b) i = 2

Step 2: a) T
2 

— [c]

b) 
~~

c) N — [4]

d) F
3

— [+]
e) S

3
— [~ ]

f) C — 1$]

Step 3: d) T
3 

— [
~~]

e) CS —

Step 4: a) C — [*1

b) N — [4)

c) B
2 — 0

16
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Step 2: a) T
2 

[c]

b) = [3]

c) N = [4]

d) F
3 

= [c]

e) S
3 

[q ~J
f) C = [~J

Step 3: d) T
3 

= [4k ]

e) CS = [,b,d ,e,~ J

Step 4: a) C = [eJ

b) N = [3,4]

c) B
2 

— 0

d) Go to step 2

Step 2: a) T
2 

= [ q ]

b) M
2
= ( q i ]

c) N [3,4]

d) F
3

— [q]

e) S
3

— [4]

f) C — [e]

Step 3: d) T
3 

— [
~~]

e) CS — [ , b,d,c]

Step 4: a) C — [e]

b) N — [3,4]

c)

Step 5: a) 1 1

17
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Step 2: a) T
2 

— [+ 1
b) M

2 = [~ ]

c) N = [4]

d) F
3

— [+J

e) S
3 

= [~ J
f) C = [ 4,]

Step 3: d) T
3 

= [ 4,]

e) CS = [,~ ,d ,e,c]

Step 4: a) C = [~ J
b) N — [4]

c) B
2

= — 1

Step 5: a) 1 1

Step 4: a) C — [c,d ,e]

b) N = [2,3,4]

c) B
1 — l

Step 2: a) T
1 

= [a]

b) — [2]

c) N — [3,4]

d) F
2 

— Ed]

e) S
2 (cJ

f) C — [e]

Step 3: a) B
2 — l

b) I — 2

18
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Step 4: .,) C [c,d ,e]

b) N = [3,4]

c) B
1 = I

Step 2: a) T
1 

[b]

b) M = [3]
L 1

c) N [4]

d) F
2 [e]

e) S
2
= [c]

f) C [d]

Step 3: a) B~ = 1

b) 1 = 2

Step 2: a) T
2 

= [cJ

b)

~) N = [4]

ci) F
3 

[d)

~) S
3
= [~~]

F) C = [4 , ]

Step 3: d) T
3 

a [4 , ]

e) CS [S,a,~~,d ,e]

-

• 

Step 4: a) C — Ed]

b) N — [4]

C) B
2 — O

Step 2: a) T
2 — [$]

b) M
2 — [q]
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c) N — [4)

d) F
3

= [4,J

e) S
3
= [4,]

f) c = [d]

Step 3: d) T
3 

[4 , ]

e) CS = [b ,a ,e,c,]

Step 4: a) C Ed]

b) N = [4]

c) B
2
=
~~

l

Step 5: a) j  1

-: Step 4: a) C [c,d ,e]

b) N = [3,4]

c) B
1

= O

Step 2: a) T
1 

= [
~~]

b) M
1
= [4,]

c) N [3,4]

d) F
2

= [4,]

e)

1) C [c ,d,eJ

Step 3: d) T
2 

— [4 , ]

e) CS — [a,b]

Step 4: a) C [c,d,e]

b) N — [3,4]

c)

20
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Ste’p 5: :i) I = 0

4 c) Stop .

The example above produces seven modified cut sets;

CS1 = Ea ,b ,c,d ,e]

CS2 [,~~,c ,d ,e]

CS3 = [, b ,~ ,d ,ej

• CS4 [a ,b,c,dJ

CS
5 

= ~~~~~~~~~

CS6 = [a ,~ ,c,eJ

CS7 = (a ,bJ

which satisfy the statements (1) — (iii) of theorem .
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5. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 it y

Using the modified cut sets generated by the previous algorithm ,

we atLempt to develop some expressions for t ime dependent complex

systems reliability.

Notation :

X(t) = the state of a component at time t.

F(t) = 1 — F(t)

P(X(t)= 1)

= probability that the component performs adequately over

[0 ,t].

CS . jth modified cut set

r . j j
3

= number of operative components in jth modified cut set

S . — I C SJ
3

-
• 

number of failed components in jth modified cut set

Assumption:

1. Each component fails in accordance with the same distribution ,

i.e. F(t).

2. More than tw~ components don ’t fail at ~he same time.

R(t) — time dependent system reliability

22
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r

Theorem: The time dependent system unreliability is given by

R(t) a l—R(t)

c r ,t s
a E S.![F(t)] ij [F (x) ]  ~~~ dF(x )

where c is number of modified cuit sets.

Proof: Note that

— probability that r
1 
components don ’t fail

at  t Un t~ t .

— proha)~ - 1~~ v that the last one of s~3

components fail at time t.

The results follows from the fact that each modified cut set

is a mutually exclusive event.

From this theorem it can be easily shown

(1) The hazard rate function z(t) of complex system is given

z( t) a dR( t)/ R( t)

c • r t a s i  r

~ a r f [F(x) ] 3
~~dF(x) + F ( t ) [F( t ) ]  3

~~ jF( t)] 3
~~ f( t)

j—l 3 L ~ o
a

c r t S .
1 — E s

3
![~~(t)]  ~1 [F(x) ] ~~~dF(x )

i—i 0

where f(t) — 
dF( t)

23
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( i i )  The menn t Ime to system fail ur e (MTTF) Is given by

MTTF J R(1)dt

a 
~tdR(t) t

= .~ 1
S .!f~~(-y . f

t
[F~~~ ~~ dF (X) + [~~~~~~

j l ) ( ) ~ j l
()

(iii) The upper and lower bound on time dependent system

unreliability is given by

< ~~(t)

i~c~~~ 
L~t)II ~[F(t)J b-i > ~ (t)

where b = number of components

n number of nodes

c = smallest number of cut sets

6. Application to - a Repairable Complex Systems

For convenierce, we make an assumption that ench

component has exponential failure and repair distribution with

rate A and p, respectively .

Let x (t )  = random variable of the each component state at time t.

O = failure state

1 = operating state

• P
13
(t) — probability that a component will be in state j at

-
• time t, given that it was in state I at time 0.

Since each component generates two—state continuous time Markov

chain , we have poin tw ise availabili ty, P11(t), and unavailab ility ,

24
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1’10
(t), of each component:

P (t) — + A 
~11 A+p A+p

p (t) 
A A 

~10 A+lj A+p

where P11
(m) = p/(A+p) represents limiting availability .

• P10(~) = A/(A+~) represents limiting unavailability.

Now our interest is to determine pointwise (or limiting)

availability of a complex system.

Buzacott [2] suggested network approaches which are based on successive

reduction of the network into series—parallel system and on minimal

paths or cuts concepts.

Singh and Bill inton [9J ex tended Buzaco tt ’s methods into the

• explicit formulae for system availability mean cycle time and

failure frequency in the steady — state.

As po inted out before , application of H~nsler ’s algorithm to a

complex repairable system yields more explicit formulae for

pointwise or limiting availability.

Let A (t) • pointwise availability of complex system

A(°~) • limiting availability of complex system.

Using the same notation as Chap. 5, we have Theorem: If

Hinsler ’. algorith is available, then the pointwise unavailability

25



of the complex system is given by

C S. ‘y.• A(t) = ~~1IP 10(t)] 
3LP11(t)J

3

• and limiting unavailability will be given by

C S y
A(oo ) = ~ 1[P

10
(~)i ~[p11(~)1 ~

C S. y
= E (_i~) 3~ JL~ ij=l X-I-~ X+~

where A(t) = 1 — A(t) and ~~(cx’) = 1 — A(~) yield the pointwise

and limiting availability. Since this comes directly from Hansler ’s

theorem, the proof can be omitted .

Also the upper and lower bound on pointwise or limiting unavailability

is given by

i=b~(n_2)
(l l O (t

~~~~~ll
(t)1 <~~~(t)

> ~~(t)

i b ~(n—2Y i”A+p~~~X+p~ 
~~ - 

A c 0

> A(~°

However, this approach might not derive the explicit formula

for the failure frequency.

26
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CONCLUSIONS

We have reviewed some of the major new algorithms for calculating

the reliability of a complex system. An application of two of the

algorithms to the calculation of time dependent reliability and to th~

calculation of reliability for a rapairable complex system is also

discussed.

27
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METRIC SYSTEM

BASE UNITS:

Quantity t~nit SI Symbol

length metre m
mass kilogram kg
time second s
elec tric current ampere A
ther,nc~dynamic temperature kelvin k
amount of substance mole mol
luminous intensity candela cd • -

SUPPLEM ENTARY UNITS

plane angle radian rad -

solid angle steradian sr -

DERIVED UNITS:

Acceleration metre per second squared - ins
a( t iv ity (of a radioactive source) disintegration per second (disintegrstiofl)/s
angular acceleration radian per second squared rad s
angular velocity radian per second radis
area square metre m
density kilogram per eubi,: metre kgim
electric capacitance farad F A-s/V
electrical conductance siemens S A/V
electric field strength volt per metre V- rn
electric inductance henry II V.sIA
electric potential difference volt V W A
electric resistance ohm V~A
electromotive force volt V W A
energy joule I N.m
entropy jou le per kelvin JfK
force newton N kg-m/s
frequen cy hert z Hz (cycle ls

illuminance lux Ix 1 m m
luminance candela per square metre - • cd/rn

luminous flux lumen cd~sr
magnetic field strength ampere per metre • - Aim
magnetic flux weber Wb V-s
magnetic flux density tes la T Wbm
magnetomotive force ampere A
power wa tt W J~S
pressure pasca l Pa N/rn
quantity of electricity coulomb C A-s
quant ity of heat joule I N-rn
radiant intensity watt per steradian W’sr
specific heat joule per kilogram-kelvin
stress pascal Pa N/rn
thermal conductivity watt per metre-kelvin • W/m-K
ve locity metre per second rivs
viscosity, dynamic pascal-second Pa-s
viscosity, kinematic square metre per se~ ,nd rn/s
voltage volt V W A
volume cubic metre m
wavenumber reciprocal metre - (wave)/m
work joule I N.m

SI PRrnXES:

Multip li,.ation Factors Prefis SI Symbol

1 000 000 00() 0(X) - 1(1° tef a
I 0(1(1000 000 = lit ” giBe

1 (1(1(1 000 :- 3 (J~ 
mega M

1 000 = 10’ kilo k
tOO = 102 hecto~ h

I 0 10’ deL di
0I~ 10” ’ dect d
0.01 = 10—2 (MfltI~

000 1 tO— ’ milli in
0 (XXI 001 10- mIcro

0.000 000 001 10~~ nsno n

0 (10(1 000 000 001 i(r ~ p1w
0.000 000 000 ~XN1 (Xl i I(r ” lemto

0.000 000 000 000 000 001 10 ~R itt,, 5

* To be avoided where possible
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MISSION
of

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command , control, and cor,r,unications
(C 3) activities, and in the C3 areas of inf ormatior ~ sci ences
and intelligence . The principal technical mission areas •

are communications , electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information systezzr technology,
ionospheric propagation , solid state sciences , mi crowa ve
physics and electronic relia.bility, maintaina bilit g and
compatibility.
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